GC Fractionation Allows Comparative Total Microbial Community Analysis, Enhances Diversity Assessment, and Facilitates Detection of Minority Populations of Bacteria
نویسنده
چکیده
A major challenge in modern microbial ecology is to effectively and accurately determine total microbial community diversity, particularly with regard to the detection of (a) unculturable and fastidious bacterial species and (b) those present only in low abundance (i.e., minority populations). A common theme in published studies and textbooks regarding microbial community diversity in most environments is that typically only 0.1–1.0% of bacteria observed by direct microscopic enumeration can be recovered on using general laboratory media (e.g., see Ferguson, et al. [1984], Fliermans and Balkwill [1989], Hazen et al. [1991], RappeI and Giovannoni [2003], Janssen [2006], Jones et al. [2009], and Spain et al. [2009]). As a result, many microbial ecologists are of the opinion that the vast majority of microbial diversity remains uncharacterized, highlighting both potentially huge gaps in our understanding of how microbial communities function in an ecosystem and the large reservoir of possibly useful organisms and genes. This concern has spurred the development of a large number of molecular approaches for microbial community analysis, many of which are based on analysis of nucleic acids extracted directly from environmental samples to enhance our
منابع مشابه
GC fractionation enhances microbial community diversity assessment and detection of minority populations of bacteria by denaturing gradient gel electrophoresis.
Effectively and accurately assessing total microbial community diversity is one of the primary challenges in modern microbial ecology. This is particularly true with regard to the detection and characterization of unculturable populations and those present only in low abundance. We report a novel strategy, GC fractionation combined with denaturing gradient gel electrophoresis (GC-DGGE), which c...
متن کاملA Comparative Analysis of Genetic Diversity and Structure of Whooper Swan (Cygnus cygnus): A New Considerable Established Population in Iran
New wintering populations of Whooper Swan have been recently reported from west Asia, a lack of information about the population and its origin. The understanding the genetic structure and connectivity are crucial for determining strategies of management for its conservation programs. The samples were collected from two populations in northern Iran, Finland, Sweden, and Iceland, where with larg...
متن کاملSeasonal variations of microbial community in a full scale oil field produced water treatment plant
This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand eff...
متن کاملChemical constituents of sea buckthorn (Hippophae rhamnoides L.) fruit in populations of central Alborz Mountains in Iran
Background and objectives: Hippophae rhamnoides L. known as sea buckthorn is a deciduous medicinal shrub belonging to Elaeagnaceae family. In this study, the most important chemical constituents of sea buckthornwere evaluated in wild populations of central Alborz Mountains in Iran during the growth season of 2014 and 2015. Methods: Phy...
متن کاملA Review on Impact of E-waste on Soil Microbial Community and Ecosystem Function
The ever increasing pile-up of electronic waste in dumping sites, especially in developing countries such as China, Pakistan, India and several African countries, might have caused a significant alteration in the microbial community of the contaminated sites. This change in the microbial population may have significant impact to the soil ecology function. The major pollutants of electronic wast...
متن کامل